
Normal Amplitude Modulation
Time and Frequency Domain Characteristics 

Lecture Outline

•Why do we need modulation?

•Define the normal AM signal

• The normal AM in the time and frequency domains

•Power efficiency

• Effect of the modulation index
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Normal Amplitude Modulation
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Why Modulation?

• There are several reasons why modulation is needed in a communication system.

• Physical antenna size: For efficient transmission of a signal, the antenna length 
should be about λ/4, where λ is the wavelength. 

• For example, let the frequency of the message be 3KHz (audio signal)

• The wavelength 𝜆 =
𝑐

𝑓
=

3.0𝑋108

3.0𝑋103
= 105𝑚 = 100𝑘𝑚. 

• Hence, the size of the antenna should be around (λ/4 =25 km), which is not at all 
practical.

• Now, let us find the antenna length in the GSM band (1000 MHz):

• 𝜆 =
𝑐

𝑓
=

3.0𝑋108

1000𝑋106
= 0.3𝑚

• Hence, the size of the antenna should be around (λ/4 = 7.5 cm), which can easily fit 
into a mobile device. This is a challenging design issue in modern mobile technology.
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Why Modulation?

• Band-pass channels: Most, if not all, channels over which messages are 
transmitted are band-pass, while messages are low-pass signals. Hence, direct 
transmission of messages over band-pass channels would result in high 
attenuation (essentially no received signal). This necessitates shifting the 
message spectrum to coincide with the channel bandwidth.

Baseband Message Band-pass Channel

M f
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Pass-band

Stop-band
M f

Y(f) = M(f)H(f)



Why Modulation?

• Multiplexing: Modulation allows multiple users to use the same channel by 
assigning each user a portion of the available bandwidth without interfering 
with other users.

Band-pass Channel

𝑀1(𝑓)

𝑀2(𝑓)

𝑀3(𝑓)
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Amplitude modulation 

• Amplitude modulation (AM) is defined as the process in which the amplitude of 
the carrier 𝑐 𝑡 is varied linearly with 𝑚 𝑡 . 

• Three types of amplitude modulation will be considered in detail. These are 
• Normal amplitude modulation

• Double sideband suppressed carrier modulation (DSB-SC)

• Single sideband modulation (SSB-SC)

• The baseband (message) signal 𝑚 𝑡 is referred to as the modulating signal and 
the result of the modulation process is referred to as the modulated signal 𝑠 𝑡 .

• Modulation is performed at the transmitter

• Demodulation, which is the process of extracting 𝑚 𝑡 from 𝑠 𝑡 , is performed 
at the receiver. 6



Normal Amplitude modulation 
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Spectrum of the Normal AM Signal

Remarks

a. The baseband spectrum  

𝑀(𝑓) , of the message has 

been shifted to the bandpass

region centered around the 

carrier frequency 𝑓𝑐.

b. The spectrum 𝑆(𝑓) consists 

of two sidebands (upper 

sideband and lower 

sideband) and a carrier.

c. The transmission bandwidth 

of 𝑠(𝑡) is:

𝐵.𝑊.= (𝑓𝑐 +𝑊) −
𝑓𝑐 −𝑊 = 𝟐𝑾 which is twice 

the message bandwidth.
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Spectrum of the Normal AM: Sinusoidal Modulation

Example: Consider the normal AM with sinusoidal modulation, where c t = 𝐴𝑐cos(2𝜋𝑓𝑐𝑡);  
m t = 𝐴𝑚cos(2𝜋𝑓𝑚𝑡); plot m(t), c(t), s(t) and find their spectrum.

Solution: s t = 𝐴𝑐(1 + 𝑘𝑎m t )cos 2𝜋(𝑓𝑐)𝑡

• 𝑠 𝑡 = 𝐴𝑐𝑐𝑜𝑠(2𝜋𝑓𝑐𝑡) + 𝐴𝑐𝑘𝑎𝐴𝑚 𝑐𝑜𝑠 2𝜋𝑓𝑐𝑡 𝑐𝑜𝑠 2𝜋𝑓𝑚𝑡 ;

• 𝑠 𝑡 = 𝐴𝑐𝑐𝑜𝑠 2𝜋𝑓𝑐𝑡 +
𝐴𝑐𝐴𝑚𝑘𝑎

2
𝑐𝑜𝑠 2𝜋( 𝑓𝑐+𝑓𝑚)𝑡 +

𝐴𝑐𝐴𝑚𝑘𝑎

2
𝑐𝑜𝑠 2𝜋(𝑓𝑐−𝑓𝑚)𝑡

• 𝑆 𝑓 = ℑ{𝑠(𝑡)}

• M f =
𝐴𝑚

2
𝛿(𝑓 − 𝑓𝑚) +

𝐴𝑚

2
𝛿(𝑓 + 𝑓𝑚)

• The next figure shows all the plots 

when 𝑓𝑚 = 200 Hz and 𝑓𝑐 = 000 Hz
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Spectrum of the Normal AM Signal
An AM signal in the time and frequency domains. 

s t = (1 + 𝑘𝑎m t )cos 2𝜋(2000)𝑡 m t = cos 2𝜋(200)𝑡 𝜇 = 𝐴𝑚𝑘𝑎 = 1.0
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m t = cos 2𝜋(200)𝑡

c t = cos 2𝜋(2000)𝑡

s t

𝑘𝑎 = 1.0



Power Efficiency of Normal AM

• The maximum efficiency occurs when μ=1, 
i.e. for a 100% modulation index. The 
corresponding maximum efficiency is only η 
= 1/3. As a result, 2/3 of the transmitted 
power is wasted in the carrier

• Remark: Normal AM is not an efficient 
modulation scheme in terms of the 
utilization of the transmitted power.11

𝜇 = 𝐴𝑚𝑘𝑎



Amplitude Modulation: AM Modulation Index

12

The modulation index μ (modulation depth) of 
an amplitude modulated signal is defined as the 
measure or extent of amplitude variation about 
an un-modulated carrier. In other words the 
amplitude modulation index describes the 
amount by which the modulated carrier 
envelope varies about the static level.

𝝁 = 𝑨𝒎𝒌𝒂



Amplitude Modulation: Effect of the Modulation Index

m t = cos 2𝜋(200)𝑡

𝜇 = 0.5

𝜇 = 1.0

𝜇 = 1.5

s t = (1 + 𝜇m t )cos 2𝜋(2000)𝑡
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𝜇 = 𝑘𝑎|𝑚 𝑡 |



Amplitude Modulation: Multi-tone Modulation

s t = (1 +𝑚1 t + 𝑚2 t )cos 2𝜋(2000)𝑡

𝑚1 t = 0.5cos 2𝜋(200)𝑡 𝑚2 t = 0.25cos 2𝜋(100)𝑡

𝑘𝑎 = 1; 𝐴𝑐 = 1
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A non-envelope distortion case 
for multitoned transmission

𝑚1 t + 𝑚2 t

c t

s t



Normal Amplitude Modulation
Generation and Demodulation 

Lecture Outline

• Last Lecture: 
• Why do we need modulation?
• Define the normal AM signal
• The normal AM in the time and frequency domains
• Power efficiency
• Effect of the modulation index

• This Lecture:
• AM generation techniques: the switching modulator
• The envelope detector
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Normal Amplitude Modulation: Standard Form

s(𝑡) = 𝐴𝐶(1 + 𝑘𝑎𝑚(𝑡))cos2𝜋𝑓𝑐𝑡

+𝑘𝑎
𝑚(𝑡)

𝑐 𝑡 = 𝐴𝐶cos2𝜋𝑓𝑐𝑡DC = 1

mixer
s(𝑡)
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𝑆(𝑓) =
𝐴𝐶

2
𝛿(𝑓 − 𝑓𝐶) +

𝐴𝐶

2
𝛿(𝑓 + 𝑓𝐶) +

𝐴𝐶𝑘𝑎

2
𝑀(𝑓 − 𝑓𝐶) +

𝐴𝐶𝑘𝑎

2
𝑀(𝑓 + 𝑓𝐶)



Generation of a Normal Amplitude Modulation: the Switching Modulator

Band-
pass 
Filter
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𝒄 𝒕 = 𝑨𝑪𝒄𝒐𝒔𝟐𝝅𝒇𝒄𝒕



Generation of a Normal Amplitude Modulation: the Switching Modulator

)𝑽𝟐(𝒕) = )𝑨𝑪𝐜𝐨𝐬𝝎𝑪𝒕 +𝒎(𝒕 𝒈𝑷(𝒕

𝒈𝑷(𝒕) =
𝟏

𝟐
+
𝟐

𝝅
𝐜𝐨𝐬𝝎𝑪𝒕 −

𝟏

𝟑
𝐜𝐨𝐬𝟑𝝎𝑪𝒕 +

𝟏

𝟓
𝐜𝐨𝐬𝟓𝝎𝑪𝒕+. . .
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Demodulation of a Normal Amplitude Modulation: Envelope Detection

Ideal Envelope 
Detector

𝐴𝐶|1 + 𝑘𝑎m t |
∝ m t

Capacitor
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𝐴𝐶(1 + 𝑘𝑎𝑚(𝑡))cos2𝜋𝑓𝑐𝑡

To avoid envelope distortion, 
|1 + 𝑘𝑎m t | should  equal (1 + 𝑘𝑎𝑚(𝑡))
That is, (1 + 𝑘𝑎𝑚(𝑡)) ≥ 0 for all time



Example: single tone modulation (under-modulation)

Here, m(t) can be extracted without distortion. (1 + 𝑘𝑎𝑚(𝑡)) ≥
0 for all time. |𝟏 + 𝒌𝒂𝐦 𝒕 |= (𝟏 + 𝒌𝒂𝒎(𝒕)) . By removing the 

dc value, the output will be proportional to the message

𝜇 = 0.25

20

s(𝑡) = 𝐴𝐶(1 + 0.25cos2𝜋𝑓𝑚𝑡)cos2𝜋𝑓𝑐𝑡

𝒚(𝒕) = 𝑨𝑪(𝟏 + 𝟎. 𝟐𝟓𝒄𝒐𝒔𝟐𝝅𝒇𝒎𝒕)



Example: single tone modulation (100% - modulation)

Here, m(t) can be extracted without distortion. (1 + 𝑘𝑎𝑚(𝑡)) ≥ 0 for all time. That 

is, |1 + 𝑘𝑎m t |= (1 + 𝑘𝑎𝑚(𝑡)). By removing the dc value, the output will be 

proportional to the message

𝜇 = 1.0
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𝒚(𝒕) = 𝑨𝑪(𝟏 + 𝒄𝒐𝒔𝟐𝝅𝒇𝒎𝒕)

s(𝑡) = 𝐴𝐶(1 + cos2𝜋𝑓𝑚𝑡)cos2𝜋𝑓𝑐𝑡



Example: single tone modulation (over-modulation)

Here, m(t) cannot be extracted without distortion. The shape of the 

envelope is not the same as the shape of the message. (1 + 𝑘𝑎𝑚(𝑡)) fails 
to remain positive for all time. |1 + 𝑘𝑎m t | ≠ (1 + 𝑘𝑎𝑚(𝑡))

𝜇 = 1.25

22

s(𝑡) = 𝐴𝐶(1 + 1.25cos2𝜋𝑓𝑚𝑡)cos2𝜋𝑓𝑐𝑡



A Simple Practical Envelope Detector
• A practical envelope detector consists of a diode followed by an RC circuit that forms a low pass filter.

• During the positive half cycle of the input, the diode is forward biased and C charges rapidly to the peak value 
of the input. 

• When s(t) falls below the maximum value, the diode becomes reverse biased and C discharges slowly through 
𝑅𝐿. 

• To follow the envelope of s(t), the circuit time constant should be chosen such that : 
1

𝑓𝐶
<< 𝑅𝐿𝐶 <<

1

𝑊

where W is the message B.W and 𝑓𝐶 is the carrier frequency.
• When a capacitor C is added to a half wave rectifier circuit, the output follows the envelope of s(t). The circuit 

output (with C connected) follows a curve that connects the tips of the positive half cycles, which is the 
envelope of the AM signal.
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A Simple Practical Envelope Detector: Effect of the Time Constant

Consider the AM signal  𝑠 𝑡 = 𝐴𝑐 1 + μ cos 2πfmt cos(2πfct) that is demodulated using 
the envelope detector. Assume 𝑅𝑠 = 0, μ = 0.25, 𝐴𝑐 = 1, fm = 1Hz, fc = 25Hz. We show the 
effect of the time constant 𝜏 = 𝑅𝐿𝐶 on the detected signal

RC output when tau 0.1 RC output when tau 0.9

RC optimum tau 0.74

𝑇𝐶 << 𝑅𝐿𝐶 << 𝑇𝑚

24



Double Sideband Suppressed Carrier (DSB-SC) Modulation: 
Lecture Outline

• In this lecture, we consider a second type of AM modulation 
called DSB-SC. 

• We analyze this modulation technique in the time and 
frequency domains. 

• Consider the generation and demodulation techniques. 

• Study the effect of non-coherence in the phase and 
frequency of the locally generated carrier at the receiver on 
the demodulated signal. 

1



Double Sideband Suppressed Carrier (DSB-SC) Modulation

• A DSB-SC signal is an amplitude-modulated signal that has the form

• 𝒔 𝒕 = 𝑨𝒄𝒎 𝒕 𝐜𝐨𝐬(𝟐𝝅𝒇𝒄𝒕), where

• 𝑐 𝑡 = 𝐴𝑐cos(2𝜋𝑓𝑐𝑡):  is the carrier signal

• 𝑚 𝑡 :  is the baseband message signal

• 𝑓𝑐 >> 𝑊, 𝑊 is the bandwidth of the baseband message signal 𝑚 𝑡

2

FIGURE: 𝒎 𝒕 𝒄(𝒕)
𝒎 𝒕 = 𝒄𝒐𝒔(𝟐𝝅(𝟏𝟎𝟎)𝒕)
𝒄 𝒕 = 𝒄𝒐𝒔(𝟐𝝅 𝟏𝟎𝟎𝟎 𝒕);



Spectrum of the Double Sideband Suppressed Carrier (DSB-SC)
• DSB-SC:   𝒔 𝒕 = 𝑨𝒄𝒎 𝒕 𝐜𝐨𝐬(𝟐𝝅𝒇𝒄𝒕)

• 𝑆 𝑓 = ℑ{𝐴𝑐𝑚 𝑡 co s 2𝜋𝑓𝑐𝑡 } =
𝐴𝑐

2
[𝑀 𝑓 − 𝑓𝑐 +𝑀 𝑓 + 𝑓𝑐 ]

Remarks: Similarities and Differences with Normal AM

• 1.  No impulses are present in the spectrum at ± fc , i.e., no carrier is transmitted as in the case of AM

• 2. The transmission B.W of s(t) = 2W;  twice the message bandwidth (same as that of normal AM).

• 3. Power efficiency = 
𝑝𝑜𝑤𝑒𝑟 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑖𝑑𝑒 𝑏𝑎𝑛𝑑𝑠

𝑡𝑜𝑡𝑎𝑙 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 𝑝𝑜𝑤𝑒𝑟
= 100%. This is a power efficient modulation scheme.

• 4. Coherent detector is required to extract m(t) from s(t), as we shall demonstrate shortly.

• 5. Envelope detection cannot be used for this type of modulation.

3

Upper Sideband

Lower Sideband



Spectrum of DSB-SC: Sinusoidal Modulation

• Example: Consider the sinusoidal modulation case where c t = 𝐴𝑐cos(2𝜋𝑓𝑐𝑡);  
m t = 𝐴𝑚cos(2𝜋𝑓𝑚𝑡); plot m(t), c(t), s(t) and find their spectrum.

Solution:

• 𝑠 𝑡 = 𝐴𝑐𝑚 𝑡 𝑐𝑜𝑠(2𝜋𝑓𝑐𝑡) = 𝐴𝑐𝑐𝑜𝑠 2𝜋𝑓𝑐𝑡 𝐴𝑚𝑐𝑜𝑠(2𝜋𝑓𝑚𝑡);

• =
𝐴𝑐𝐴𝑚

2
𝑐𝑜𝑠 2𝜋(𝑓𝑐+𝑓𝑚)𝑡 +

𝐴𝑐𝐴𝑚

2
𝑐𝑜𝑠 2𝜋(𝑓𝑐−𝑓𝑚)𝑡

• 𝑆 𝑓 = ℑ{𝐴𝑐𝑚 𝑡 𝑐𝑜 𝑠 2𝜋𝑓𝑐𝑡 } =
𝐴𝑐

2
[𝑀 𝑓 − 𝑓𝑐 +𝑀 𝑓 + 𝑓𝑐 ]

• M f =
𝐴𝑚

2
𝛿(𝑓 − 𝑓𝑚) +

𝐴𝑚

2
𝛿(𝑓 + 𝑓𝑚)

• The next figure shows all the plots when

𝑓𝑚 = 100 Hz and 𝑓𝑐 = 1000 Hz

4
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Spectrum of the DSB-SC Signal: Sinusoidal Modulation

𝑚 𝑡 = 𝐴𝑚𝑐𝑜𝑠(2𝜋(100)𝑡); c 𝑡 = 𝑐𝑜𝑠(2𝜋(1000)𝑡);  𝑠 𝑡 = 𝐴𝑐𝑚 𝑡 𝑐𝑜𝑠(2𝜋𝑓𝑐𝑡); 
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𝑓𝑐 = 1000

𝑓𝑢 = 1100

𝑓𝑙 = 900

𝑓𝑚 = 100

𝑚 𝑡

c 𝑡

𝑠 𝑡



Generation of DSB-SC: The Product Modulator

• Product Modulator: It multiplies the message signal m(t) with the carrier c(t). 
This technique is usually applicable when low power levels are possible and 
over a limited carrier frequency range.

6



Generation of DSB-SC: The Ring Modulator

• Consider the scheme shown in the figure.

• Let c(t) >> m(t). Here the carrier c(t) controls the behavior of the diodes .
• During the positive half cycle of c(t), c(t) > 0, and D1 and D2 are ON while D3 and D4 are 

OFF. Here,  y(t) = m(t).

• During the negative half cycle of  c(t), c(t) < 0 and D3 and D4 are ON while and D1 and 
D2 are OFF. Here, y(t) = - m(t).

• So m(t) is multiplied by +1 during the +ve half cycle of 

c(t) and m(t) is multiplied by -1 during the -ve half cycle of c(t)

7

c(t) > 0 c(t) < 0

y(t) = m(t) y(t) = - m(t)

D1 and D2 ON D3 and D4 ON 



Generation of DSB-SC: The Ring Modulator
• So m(t) is multiplied by +1 during the +ve half cycle of c(t) and m(t) is multiplied by -1 during 

the -ve half cycle.

• Mathematically, y(t) behaves as if m(t) is multiplied by the switching function gp(t) where  

gp(t) is the square periodic function with period Tc = 
1

𝑓𝑐
; Tc the period of c(t). By expanding 

gp(t) in a Fourier series, we get

• y(t) = m(t) gp(t) =  m(t)[
4

𝜋
cos2πfct -

4

3𝜋
cos 3(2πfct) + 

4

5𝜋
cos5(2πfct)]

• = m(t) 
4

𝜋
cos2πfct - m(t) 

4

3𝜋
cos 3(2πfct) + m(t) 

4

5𝜋
cos5(2πfct)

• When y(t) passes through the BPF with center frequency 𝑓𝑐,  and bandwidth = 2W, the only 
component that appears at the output is the desired DSB-SC signal, which is

𝒔 𝒕 =
𝟒

𝝅
𝒎 𝒕 𝒄𝒐𝒔𝟐𝝅𝒇𝒄𝒕
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Demodulation of DSB-SC
• A DSB-SC signal is demodulated using what is known as coherent demodulation. This means that the 

modulated signal s(t) is multiplied by a locally generated signal at the receiver which has the same 
frequency and phase as that of the carrier c(t) at the transmitting side

Perfect Coherent Demodulation

• Let 𝑐 𝑡 = 𝐴𝑐cos(2𝜋𝑓𝑐𝑡)

• 𝑐′ 𝑡 = 𝐴𝑐′cos(2𝜋𝑓𝑐𝑡)

• Mixing the received signal with the version of the carrier at the receiving side, we get

• v t = 𝑠(𝑡)𝐴𝑐′cos(2𝜋𝑓𝑐𝑡) = Ac 𝐴𝑐′m(t) cos22πfct

• = 
A
c
𝐴𝑐′

2
m(t) [1+ cos 2 (2πfct)]  =  

𝐀
𝐜
𝑨𝒄′

𝟐
m(t) +  

A
c
𝐴𝑐′

2
m(t) cos 2(2πfct)

• The first term on the RHS is proportional to 𝑚 𝑡 , while the second term is a DSB signal modulated 
on a carrier with frequency 2𝑓𝑐. The high frequency component can be eliminated using a LPF with 

B.W = W. The output is 𝒚 𝒕 =
𝑨𝒄𝑨𝒄

′

𝟐
𝒎(𝒕)

• Therefore, 𝑚(𝑡) has been recovered from 𝑠(𝑡) without distortion, i.e., the whole modulation-
demodulation process is distortion-less.

9

X

𝑐′ 𝑡 = 𝐴𝑐′cos(𝟐𝝅𝒇𝒄𝒕)

𝑠 𝑡 = 𝐴𝑐m(t)cos(𝟐𝝅𝒇𝒄𝒕) Low pass 
filter

B.W = W

v(t) y(t)



Effect of Carrier Non-Coherence on Demodulated Signal: Constant Phase Shift
A constant phase difference between c(t) and 𝒄′ 𝒕

• Let c(t) = Accos2πfct , 𝑐′ 𝑡 = 𝐴𝑐′cos(2𝜋𝑓𝑐𝑡 + 𝜑)

• We use the same demodulator  

• v(t) = Acm(t)cos2πfct . 𝐴𝑐′ cos(2πfct+Ø)

• = 
A
c
𝐴𝑐′

2
m(t)[ cos (4πfct + Ø) + cos Ø]

• = 
𝐴𝑐𝐴𝑐

′

2
m(t) cos (4πfct + Ø) +

𝑨𝒄𝑨𝒄
′

𝟐
m(t) cos Ø

• The low pass filter suppresses the first high frequency term and admits only the second low 

frequency term. The output is 𝒚 𝒕 =
𝑨𝒄𝑨𝒄

′

𝟐
𝒎(𝒕)𝒄𝒐𝒔∅

• For  0 < Ø < 
𝜋

2
,  0  < cos Ø < 1,  y(t) suffers from an attenuation due to Ø.

• However, for Ø =  
𝝅

𝟐
,  cos Ø = 0 and y(t) = 0, i.e., receiver loses the signal.

• The disappearance of a message component at the demodulator output is called 
quadrature null effect. This highlights the importance of maintaining synchronism between 
the transmitting and receiving carrier signals 𝑐′ 𝑡 and c(t). 10

X
𝑠 𝑡 = 𝐴𝑐m(t)cos(2𝜋𝑓𝑐𝑡) Low pass 

filter

v(t) y(t)

𝐴𝑐′cos(2𝜋𝑓𝑐𝑡 + 𝜑)



Effect of Carrier Non-Coherence on Demodulated Signal: Constant Phase Shift

Example: Let m1(t) = cos2π(1000)t;   m2(t) = cos2π(2000)t; m(t) = m1(t) + m2(t) 

c(t) = cos2π(10000)t  and let φ = 50 degrees.

Solution: From the analysis above, 

• 𝒚 𝒕 =
𝑨𝒄𝑨𝒄

′

𝟐
𝒎(𝒕)𝒄𝒐𝒔∅

• The next figure shows the input message, carrier, modulated, and 
demodulated signals in the time and frequency domains.       

11

X
𝑠 𝑡 = 𝐴𝑐m(t)cos(2𝜋𝑓𝑐𝑡) Low pass 

filter

v(t) y(t)

𝐴𝑐′cos(2𝜋𝑓𝑐𝑡 + 𝜑)



Effect of Carrier Non-Coherence on Demodulated Signal: Constant Phase Shift
m1(t) = cos2π(1000)t;   m2(t) = cos2π(2000)t; m(t) = m1(t) + m2(t) c(t) = cos2π(10000)t  and let φ = 50 degrees.

12

𝒎 𝒕

c 𝒕
c’ 𝒕

y(t)

s 𝒕

c’ 𝒕 = cos(2𝜋𝑓𝑐𝑡 + 𝜑)

c(t) = cos(2π𝑓𝑐t) 

𝑓𝑙 = 8000,9000

𝑓𝑢 = 11000,12000

𝑓𝑚 = 1000,2000

No distortion, just 
attenuation, unless φ = 90  



Effect of Carrier Non-Coherence on Demodulated Signal: Constant Frequency Difference

Constant Frequency Difference between c(t) and 𝒄′ 𝒕

• Let c(t) = Accos2πfct , 𝑐′ 𝑡 = 𝐴𝑐′ cos(2𝜋(𝑓𝑐+∆𝑓)𝑡)

• Again, we use the same receiver structure as before.

• 𝑣 𝑡 = 𝐴𝑐m(t)cos(2𝜋𝑓𝑐𝑡). 𝐴𝑐′ cos(2𝜋(𝑓𝑐+∆𝑓)𝑡)

• = 
A
c
𝐴𝑐′

2
m(t)[ cos  (4πfct + 2π∆ft) + cos 2π∆ft]

• After low-pass filtering,

𝒚 𝒕 =
𝑨𝒄𝑨𝒄

′

𝟐
𝒎(𝒕)𝒄𝒐𝒔(𝟐𝝅∆𝒇𝒕)

• As you can see, 𝑦(𝑡) ≠ 𝑘𝑚(𝑡) , but rather 𝑚(𝑡) is multiplied by a time function. Hence, the 
system is not distortion-less. 

• In addition, y(t) appears as a double side band modulated signal with a carrier with 
magnitude ∆f. The next example illustrates this case more.
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X
𝑠 𝑡 = 𝐴𝑐m(t)cos(𝟐𝝅𝒇𝒄𝒕) Low pass 

filter

v(t) y(t)

𝐴𝑐′cos(𝟐𝝅(𝒇𝒄+∆𝒇)𝒕)



Effect of Carrier Non-Coherence on Demodulated Signal: Constant Frequency Difference

Example: Let m(t) = cos2π(1000)t; c(t) = cos2π(10000)t  and let ∆f =500 Hz 

Solution: From the analysis in case 2 above, 

𝑦 𝑡 =
𝐴𝑐𝐴𝑐

′

2
𝑚(𝑡)𝑐𝑜𝑠(2𝜋∆𝑓𝑡)

y(t) =
Ac𝐴𝑐′

2
cos2π(1000)t cos2π(500)t

= 
A
c
𝐴𝑐′

4
[cos 2π(1500)t + cos 2π(500)t]

• The original message is a signal with a single frequency of 1000 Hz, while the 
output consists of a signal with two frequencies at f1 =1500 Hz and f2 = 500 Hz       

• ⇒ 𝑫𝒊𝒔𝒕𝒐𝒓𝒕𝒊𝒐𝒏)

14

X
𝑠 𝑡 = 𝐴𝑐m(t)cos(2𝜋𝑓𝑐𝑡) Low pass 

filter

v(t) y(t)

𝐴𝑐′cos(2𝜋(𝑓𝑐+∆𝑓)𝑡)



Effect of Carrier Non-Coherence on Demodulated Signal: Constant Frequency Difference

𝑚 𝑡 = 𝐴𝑐𝑐𝑜𝑠(2𝜋(1000)𝑡); c 𝑡 = 𝑐𝑜𝑠(2𝜋(10000)𝑡); c’ 𝑡 = 𝑐𝑜𝑠(2𝜋(10500)𝑡); ∆𝑓 = 500

15

𝒎 𝒕

c 𝒕
c’ 𝒕

y(t)
1500

500

s 𝒕

𝑓𝑚 = 1000

𝑓𝑢 = 11000

𝑓𝑙 = 9000



Single Sideband Suppressed Carrier (SSB-SC) Modulation: 
Lecture Outline

• In this lecture, we consider another type of AM modulation 
called SSB-SC. 

• We analyze this modulation technique in the time and 
frequency domains. 

• Consider the generation and demodulation techniques. 

• Study the effect of non-coherence in the phase and 
frequency of the locally generated carrier at the receiver, on 
the demodulated signal. 

1



Normal AM Signal

2

𝑩.𝑾.= (𝒇𝒄 +𝑾) − 𝒇𝒄 −𝑾 = 𝟐𝑾
• Two impulses are present in the 

spectrum at ± fc , 
• 2. The transmission B.W of s(t) = 

2W;  twice the message bandwidth
• Poor power efficiency.
• Envelope detection is used for this 

type of modulation.



Double Sideband Suppressed Carrier (DSB-SC)
• DSB-SC:   𝒔 𝒕 = 𝑨𝒄𝒎 𝒕 𝐜𝐨𝐬(𝟐𝝅𝒇𝒄𝒕)

• 𝑆 𝑓 = ℑ{𝐴𝑐𝑚 𝑡 co s 2𝜋𝑓𝑐𝑡 } =
𝐴𝑐

2
[𝑀 𝑓 − 𝑓𝑐 +𝑀 𝑓 + 𝑓𝑐 ]

Remarks:

• 1.  No impulses are present in the spectrum at ± fc , i.e., no carrier is transmitted as in the case of AM

• 2. The transmission B.W of s(t) = 2W;  twice the message bandwidth (same as that of normal AM).

• 3. Power efficiency = 
𝑝𝑜𝑤𝑒𝑟 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑖𝑑𝑒 𝑏𝑎𝑛𝑑𝑠

𝑡𝑜𝑡𝑎𝑙 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 𝑝𝑜𝑤𝑒𝑟
= 100%. This is a power efficient modulation scheme.

• 4. Coherent detector is required to extract m(t) from s(t)

• 5. Envelope detection cannot be used for this type of modulation.

3

Upper Sideband

Lower Sideband



Single Sideband Modulation

• Rationale: The information representing the modulating waveform is contained in both
the upper and the lower sidebands of the DSB signal. Redundant Transmission.

• Therefore, it is not essential to transmit both side-bands. The transmission of one
sideband will suffice in reconstructing the message signal at the receiver.

• In SSB-SC the carrier is suppressed and one of the two sideband is transmitted.

• Hence, power saving and bandwidth saving are achieved

• Sometimes, an attenuated part of the carrier is transmitted that will ease the process of
demodulation called residual carrier SSB signal, but this will not be addressed in this
lecture.

4

Upper SidebandUpper Sideband
Lower Sideband



Single Sideband Suppressed Carrier (DSB-SC) Modulation

• In this type of modulation, only one of the two sidebands of a DSB-SC is 
retained while the other sideband is suppressed. This means that the B.W of 
the SSB signal is one half that of DSB-SC. The saving in the bandwidth comes at 
the expense of increasing modulation/demodulation complexity.

• The time-domain representation of a SSB signal is

• 𝒔 𝒕 = 𝑨𝑪𝒎 𝒕 𝒄𝒐𝒔𝝎𝒄𝒕 ± 𝑨𝑪 ෝ𝒎 𝒕 𝒔𝒊𝒏𝝎𝒄𝒕

• 𝑚 𝑡 :  is the baseband message signal with bandwidth W.

• ෝ𝑚 𝑡 : Hilbert transform of 𝑚 𝑡 obtained by passing 𝑚 𝑡 through a 90-
degrees phase shifter.

• - sign: upper sideband is retained.

• + sign: lower sideband is retained.

• 𝑐 𝑡 = 𝐴𝑐cos(2𝜋𝑓𝑐𝑡):  is the high frequency carrier signal; 𝑓𝑐 >> 𝑊. 
5



Generation of SSB: Filtering Method

• A DSB-SC signal 𝒙 𝒕 = 𝟐𝑨𝑪𝒎 𝒕 𝒄𝒐𝒔𝝎𝒄𝒕 is 
generated first. A band pass filter with appropriate 
B.W and center frequency is used to pass the 
desired side band only and suppress the other 
sideband.

• The pass band of the filter must occupy the same 
frequency range as the desired sideband.

• Remark: Ideal filter do not exist in practice meaning 
that a complete elimination of the undesired side 
band is not possible. The consequence of this is that 
either part of the undesired side band is passed or 
the desired one will be highly attenuated. SSB 
modulation is suitable for signals with low 
frequency components that are not rich in terms of 
their power content, as we shall see next.

6



Generation of SSB: Practical Consideration on the Filtering Method

• The following practical considerations must be 
taken into account:
• The pass band of the filter must occupy the same 

frequency band as the desired sideband.

• The width of the transition band of the filter 
separating the pass band and the stop band must be 
at least 1% of the center frequency of the filter. i.e., 
0.01f0 ≤ ∆f. This is sort of a rule of thumb for 
realizable filters on the relationship between the 
transition band and the center frequency.

• The width of the transition band of the filter should 
be at most twice the lowest frequency components 
of the message signal so that a reasonable 
separation of the two side band is possible. If the 
message significant frequency components extends 
between 𝑓1, 𝑓2 , then 𝟐𝒇𝟏 ≥ ∆𝒇.

7

Upper sideband should fall 
within the passband
Lowe sideband within the 
stopband.
Transition band coincide 
with the empty band

DSB-SC



Single Tone Modulation: Filtering Requirements

• Let 𝑚 𝑡 = 𝐴𝑚cos(2𝜋𝑓𝑚𝑡); message signal

• Let c 𝑡 = 𝐴𝑐cos(2𝜋𝑓𝑐𝑡); carrier signal

• 𝑠𝐷𝑆𝐵 𝑡 = 𝐴𝑐𝐴𝑚cos(2𝜋𝑓𝑐𝑡)cos(2𝜋𝑓𝑚𝑡); DSB-SC modulation

• 𝑠𝐷𝑆𝐵 𝑡 =
𝐴𝑐𝐴𝑚

2
cos(2𝜋(𝑓𝑐+𝑓𝑚)𝑡) +

𝐴𝑐𝐴𝑚

2
cos(2𝜋(𝑓𝑐−𝑓𝑚)𝑡);

• 𝒔𝑺𝑺𝑩 𝒕 =
𝑨𝒄𝑨𝒎

𝟐
𝒄𝒐𝒔(𝟐𝝅(𝒇𝒄+𝒇𝒎)𝒕); upper SSB (using ideal filter)

• 𝒔𝑺𝑺𝑩 𝒕 =
𝑨𝒄𝑨𝒎

𝟐
𝒄𝒐𝒔(𝟐𝝅(𝒇𝒄−𝒇𝒎)𝒕); lower SSB (using ideal filter)

80
C mf fC mf f

𝑆𝐷𝑆𝐵(𝑓)

Cf

|H(f)| 

−30 𝑑𝐵

0f

Practical Band-pass Filter
𝒇𝟎 : Center frequency of filter

0 mf
mf

M 𝑓

C mf f
C mf f

Upper 
Sideband

Lowe 
Sideband

Ideal BPF



Upper SSB Signal in the Time and Frequency Domains: Single Tone Message
• Example: 𝑚 𝑡 = 3cos(2𝜋100𝑡); Let c 𝑡 = cos(2𝜋1000𝑡);   

𝑚 𝑡

c 𝑡

DSB-SC

BPF

Upper SSB-SC

Upper SSB-SCSingle Tone: Filter center frequency coincides with 
desired upper sideband. Still part of LSB appears

s 𝒕 =
𝑨𝒄𝑨𝒎

𝟐
𝒄𝒐𝒔(𝟐𝝅𝟏𝟏𝟎𝟎𝒕)



Filtering Issues in SSB Modulation

c 𝑡

DSB-SC

BPF

Upper SSB-SC

𝑚 𝑡 = 3cos(2𝜋150𝑡); 
𝑚 𝑡 = 3 cos 2𝜋100𝑡 + 2 cos 2𝜋200𝑡 + cos(2𝜋300𝑡)

𝑚 𝑡

c 𝑡 = cos(2𝜋1000𝑡);

Single Tone: Filter center frequency does not coincide with 
desired USB. USB attenuates, Part of LSB appears

Multi-tone: Filter center frequency does not coincide with desired 
USB. Components in USB are not passed proportionately. Part of 
LSB appears

Ideal 
BPF

Ideal 
BPF



Generation of SSB Signal: Phase Shift Method
• The method is based on the time –domain representation of the SSB signal

• 𝑠 𝑡 = 𝐴𝐶𝑚 𝑡 𝑐𝑜𝑠𝜔𝑐𝑡 ± 𝐴𝐶 ෝ𝑚 𝑡 𝑠𝑖𝑛𝜔𝑐𝑡

11



AM in time and frequency 
domains
(carrier + two sidebands)

DSB in time and 
frequency domains

SSB  in time and 
frequency domains

(no carrier but 
upper and lower 
sidebands)

(only a lower 
sidebands is 
displayed)
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Comparison of  the three types of AM modulation

Here, we show all three types of AM modulation in the time and frequency 
domains when    𝑚 𝑡 = 𝐴𝑚cos(2𝜋𝑓𝑚𝑡); c 𝑡 = 𝐴𝑐cos(2𝜋𝑓𝑐𝑡);

𝒇𝒄 + 𝒇𝒎 𝒇𝒄 + 𝒇𝒎 𝒇𝒄 − 𝒇𝒎𝒇𝒄 − 𝒇𝒎
𝒇𝒄 − 𝒇𝒎 𝒇𝒄



Demodulation of SSB-SC
• A SSB-SC signal is demodulated using what is known as coherent demodulation. This means 

that the modulated signal s(t) is multiplied by a locally generated signal at the receiver 
which has the same frequency and phase as that of the carrier c(t) at the transmitting side

Perfect Coherent Demodulation

• Let the received signal be the upper single sideband 

• 𝑠 𝑡 = 𝐴𝐶𝑚 𝑡 𝑐𝑜𝑠𝜔𝑐𝑡 − 𝐴𝐶 ෝ𝑚 𝑡 𝑠𝑖𝑛𝜔𝑐𝑡

• At the receiver, 𝑠 𝑡 is mixed with the carrier signal. The result is

• 𝑣 𝑡 = 𝑠 𝑡 𝐴𝐶 ƴ𝑐𝑜𝑠𝜔𝑐𝑡

• = 𝐴𝐶 ƴ [𝐴𝐶𝑚(𝑡)𝑐𝑜𝑠𝜔𝑐𝑡 − 𝐴𝐶 ෝ𝑚 𝑡 𝑠𝑖𝑛𝜔𝑐𝑡]𝑐𝑜𝑠𝜔𝑐𝑡

• = 𝐴𝐶𝐴𝐶 ƴ𝑚 𝑡 𝑐𝑜𝑠𝜔𝑐𝑡
2 − 𝐴𝐶𝐴𝐶 ƴ ෝ𝑚 𝑡 𝑠𝑖𝑛𝜔𝑐𝑡 𝑐𝑜𝑠𝜔𝑐𝑡

• =
𝐴𝐶𝐴𝐶 ƴ

2
𝑚 𝑡 +

𝐴𝐶𝐴𝐶 ƴ

2
𝑚 𝑡 𝑐𝑜𝑠2𝜔𝑐𝑡 −

𝐴𝐶𝐴𝐶 ƴ

2
ෝ𝑚 𝑡 𝑠𝑖𝑛2𝜔𝑐𝑡

• The low pass filter admits only the first terms. The output is: 𝒚 𝒕 =
𝑨𝑪𝑨𝑪 ƴ

𝟐
𝒎 𝒕
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X

𝑨𝒄′𝐜𝐨𝐬(𝟐𝝅𝒇𝒄𝒕)

𝑠(𝑡) Low pass 
filter

B.W = W

v(t) y(t)



Single Tone Modulation: Why One Sideband is Sufficient

• Example: When 𝑚 𝑡 = 𝐴𝑚cos(2𝜋𝑓𝑚𝑡); c 𝑡 = 𝐴𝑐cos(2𝜋𝑓𝑐𝑡);

• 𝑠𝐷𝑆𝐵 𝑡 = 𝐴𝑐𝐴𝑚cos(2𝜋𝑓𝑐𝑡)cos(2𝜋𝑓𝑚𝑡); DSB-SC modulation

• 𝑠𝐷𝑆𝐵 𝑡 =
𝐴𝑐𝐴𝑚

2
cos(2𝜋(𝑓𝑐+𝑓𝑚)𝑡) +

𝐴𝑐𝐴𝑚

2
cos(2𝜋(𝑓𝑐−𝑓𝑚)𝑡);

• The upper SSB signal is: 𝒔𝑺𝑺𝑩 𝒕 =
𝑨𝒄𝑨𝒎

𝟐
𝒄𝒐𝒔(𝟐𝝅(𝒇𝒄+𝒇𝒎)𝒕);

• 𝑣(𝑡) = 𝑠(𝑡)𝐴𝑐′cos(2𝜋𝑓𝑐𝑡) =
𝐴𝑐𝐴𝑚𝐴𝑐′

2
𝑐𝑜𝑠 (2𝜋𝑓𝑐𝑡)𝑐𝑜𝑠(2𝜋(𝑓𝑐+𝑓𝑚)𝑡);

• 𝑣 𝑡 =
𝐴𝑐𝐴𝑚𝐴𝑐′

4
𝑐𝑜𝑠(2𝜋(2𝑓𝑐+𝑓𝑚)𝑡 + cos 2𝜋𝑓𝑚 𝑡

• y 𝒕 =
𝑨𝒄𝑨𝒎𝑨𝒄′

𝟒
𝒄𝒐𝒔 𝟐𝝅𝒇𝒎 𝒕

• Message has been recovered without distortion

X

𝑨𝒄′𝐜𝐨𝐬(𝟐𝝅𝒇𝒄𝒕)

𝑠(𝑡) Low pass 
filter

B.W = W

v(t) y(t)



Effect of Carrier Non-Coherence on Demodulated Signal: Constant Phase Shift

A constant phase difference between c(t) and 𝒄′ 𝒕

• The local oscillator takes the form

• ƴ𝑐 𝑡 = ሖ𝐴𝑐 cos(𝜔𝑐𝑡 + ∅);  

• 𝑣 𝑡 = [𝐴𝑐𝑚 𝑡 cos𝜔𝑐𝑡 − 𝐴𝑐 ෝ𝑚(𝑡) sin𝜔𝑐𝑡] ሖ𝐴𝑐 cos(𝜔𝑐𝑡 + ∅)

• = 𝐴𝑐 ሖ𝐴𝑐𝑚 𝑡 cos𝜔𝑐𝑡 cos(𝜔𝑐𝑡 + ∅) − 𝐴𝑐 ሖ𝐴𝑐 ෝ𝑚(𝑡) sin𝜔𝑐𝑡 cos(𝜔𝑐𝑡 + ∅)

• =
𝐴𝑐 ሖ𝐴𝑐

2
𝑚 𝑡 cos 2𝜔𝑐𝑡 + ∅ +

𝐴𝑐 ሖ𝐴𝑐

2
𝑚 𝑡 cos ∅

• −
𝐴𝑐 ሖ𝐴𝑐

2
ෝ𝑚 𝑡 cos 2𝜔𝑐𝑡 + ∅ +

𝐴𝑐 ሖ𝐴𝑐

2
ෝ𝑚(𝑡) sin(∅)

• 𝒚 𝒕 =
𝑨𝒄 ሖ𝑨𝒄

𝟐
𝒎 𝒕 𝐜𝐨𝐬 ∅ +

𝑨𝒄 ሖ𝑨𝒄

𝟐
ෝ𝒎 𝒕 𝐬𝐢𝐧 ∅

• Note that there is a distortion due to the appearance of the Hilbert transform of the 
message signal at the output.
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X
𝑠(𝑡) Low pass 

filter

v(t) y(t)

𝑨𝒄′𝒄𝒐𝒔(𝟐𝝅𝒇𝒄𝒕 + 𝝋)



Single Tone Modulation: Effect of a Constant Phase Shift of the Carrier at Receiver

• Example: When 𝑚 𝑡 = 𝐴𝑚cos(2𝜋𝑓𝑚𝑡); c 𝑡 = 𝐴𝑐cos(2𝜋𝑓𝑐𝑡);

• The upper SSB signal is: 𝒔𝑺𝑺𝑩 𝒕 =
𝑨𝒄𝑨𝒎

𝟐
𝒄𝒐𝒔(𝟐𝝅(𝒇𝒄+𝒇𝒎)𝒕);

• 𝑣(𝑡) = 𝑠(𝑡)𝐴𝑐′cos(2𝜋𝑓𝑐𝑡 + ∅) =
𝐴𝑐𝐴𝑚𝐴𝑐′

2
𝑐𝑜𝑠 (2𝜋𝑓𝑐𝑡 + ∅)𝑐𝑜𝑠(2𝜋(𝑓𝑐+𝑓𝑚)𝑡);

• 𝑣 𝑡 =
𝐴𝑐𝐴𝑚𝐴𝑐′

4
𝑐𝑜𝑠 (4𝜋𝑓𝑐𝑡 + 2𝜋𝑓𝑚𝑡 + ∅) + cos 2𝜋𝑓𝑚𝑡 − ∅

• y 𝒕 =
𝑨𝒄𝑨𝒎𝑨𝒄′

𝟒
𝒄𝒐𝒔 𝟐𝝅𝒇𝒎𝒕 − ∅

• If the message consists of multiple tones

• y 𝑡 =
𝐴𝑐𝐴1𝐴𝑐′

4
𝑐𝑜𝑠 2𝜋𝑓1(𝑡 − ∅/2𝜋𝑓1

+ 
𝐴𝑐𝐴2𝐴𝑐′

4
𝑐𝑜𝑠 2𝜋𝑓2(𝑡 − ∅/2𝜋𝑓2 + 

𝐴𝑐𝐴3𝐴𝑐′

4
𝑐𝑜𝑠 2𝜋𝑓3(𝑡 − ∅/2𝜋𝑓3

Here, phase distortion becomes more apparent since we cannot write y t = 𝑘𝑥(𝑡 − 𝑡𝑑)

X
𝑠(𝑡) Low pass 

filter

v(t) y(t)

𝑨𝒄′𝒄𝒐𝒔(𝟐𝝅𝒇𝒄𝒕 + ∅)



Effect of Carrier Non-Coherence on Demodulated Signal: Constant Frequency Difference

Constant Frequency Difference between c(t) and 𝒄′ 𝒕

• ƴ𝑐 𝑡 = 𝐴′𝑐 cos 2𝜋(𝑓𝑐 + ∆𝑓)𝑡;  Constant frequency shift

• 𝑣 𝑡 = [𝐴𝑐𝑚 𝑡 cos𝜔𝑐𝑡 − 𝐴𝑐 ෝ𝑚(𝑡) sin𝜔𝑐𝑡] ሖ𝐴𝑐 cos 2𝜋(𝑓𝑐 + ∆𝑓)𝑡

• =
𝐴𝑐 ሖ𝐴𝑐

2
𝑚 𝑡 cos 2𝜔𝑐 + ∆𝜔 𝑡 + cos 2𝜋∆𝑓𝑡

• −
𝐴𝑐 ሖ𝐴𝑐

2
ෝ𝑚 𝑡 [sin 2𝜔𝑐 + ∆𝜔 𝑡 − sin 2𝜋∆𝑓𝑡]

• 𝒚(𝒕) =
𝑨𝒄

ሖሖ𝑨𝒄

𝟐
𝒎 𝒕 𝐜𝐨𝐬𝟐𝝅∆𝒇𝒕 +

𝑨𝒄 ሖ𝑨𝒄

𝟐
ෝ𝒎 𝒕 𝐬𝐢𝐧𝟐𝝅∆𝒇𝒕

• Once again we have distortion and  m(t) appears as if single sideband modulated on a 
carrier frequency = ∆𝑓
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X
s(t) Low pass 

filter

v(t) y(t)

𝑨𝒄′𝒄𝒐𝒔(𝟐𝝅(𝒇𝒄+∆𝒇)𝒕)



Single Tone Modulation: Effect of a Constant Frequency of the Carrier at Receiver

• Example: When 𝑚 𝑡 = 𝐴𝑚cos(2𝜋𝑓𝑚𝑡); c 𝑡 = 𝐴𝑐cos(2𝜋𝑓𝑐𝑡);

• The upper SSB signal is: 𝒔𝑺𝑺𝑩 𝒕 =
𝑨𝒄𝑨𝒎

𝟐
𝒄𝒐𝒔(𝟐𝝅(𝒇𝒄+𝒇𝒎)𝒕);

• 𝑣(𝑡) = 𝑠(𝑡)𝐴𝑐′cos(2𝜋𝑓𝑐𝑡 + 2𝜋∆𝑓𝑡)

• 𝑣(𝑡) =
𝐴𝑐𝐴𝑚𝐴𝑐′

2
𝑐𝑜𝑠 (2𝜋𝑓𝑐𝑡 + 2𝜋∆𝑓𝑡)𝑐𝑜𝑠(2𝜋(𝑓𝑐+𝑓𝑚)𝑡);

• 𝑣 𝑡 =
𝐴𝑐𝐴𝑚𝐴𝑐′

4
𝑐𝑜𝑠 (4𝜋𝑓𝑐𝑡 + 2𝜋𝑓𝑚𝑡 + 2𝜋∆𝑓𝑡) + cos 2𝜋𝑓𝑚𝑡 − 2𝜋∆𝑓𝑡

• y 𝒕 =
𝑨𝒄𝑨𝒎𝑨𝒄′

𝟒
𝒄𝒐𝒔 𝟐𝝅(𝒇𝒎 − ∆𝒇)𝒕

• So, when ∆𝑓 = 100, a message component with f = 1000Hz appears as a 900Hz component 
at the demodulator output. Again, distortion occurs because of failing to synchronize the 
transmitter and receiver carrier frequencies.
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X
s(t) Low pass 

filter

v(t)

y(t)

𝐴𝑐′cos(2𝜋(𝑓𝑐+∆𝑓)𝑡)
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Single Tone Modulation: 
Effect of a Constant 

Frequency of the Carrier at 
Receiver

𝑚 𝑡 = 3cos(2𝜋1000𝑡)

c 𝑡 = cos(2𝜋10000𝑡)

∆𝑓 = 100

𝑚 𝑡

c 𝑡

DSB-SC

BPF

SSB-SC

SSB-SC

y 𝑡

y 𝑡

𝑓𝑚 = 1000

𝑓′𝑚 = 900

c’ 𝑡 = cos(2𝜋10100𝑡)
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